Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(3): 562-569, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247219

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) causes a devastating bacterial leaf blight in rice. Here, the antimicrobial effects of D-limonene, L-limonene, and its oxidative derivative carveol against Xoo were investigated. We revealed that carveol treatment at ≥ 0.1 mM in liquid culture resulted in significant decrease in Xoo growth rate (> 40%) in a concentration-dependent manner, and over 1 mM, no growth was observed. The treatment with D-limonene and L-limonene also inhibited the Xoo growth but to a lesser extent compared to carveol. These results were further elaborated with the assays of motility, biofilm formation and xanthomonadin production. The carveol treatment over 1 mM caused no motilities, basal level of biofilm formation (< 10%), and significantly reduced xanthomonadin production. The biofilm formation after the treatment with two limonene isomers was decreased in a concentration-dependent manner, but the degree of the effect was not comparable to carveol. In addition, there was negligible effect on the xanthomonadin production mediated by the treatment of two limonene isomers. Field emission-scanning electron microscope (FE-SEM) unveiled that all three compounds used in this study cause severe ultrastructural morphological changes in Xoo cells, showing shrinking, shriveling, and holes on their surface. Moreover, quantitative real-time PCR revealed that carveol and D-limonene treatment significantly down-regulated the expression levels of genes involved in virulence and biofilm formation of Xoo, but not with L-limonene. Together, we suggest that limonenes and carveol will be the candidates of interest in the development of biological pesticides.


Assuntos
Monoterpenos Cicloexânicos , Oryza , Xanthomonas , Limoneno/farmacologia , Limoneno/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Oryza/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Front Plant Sci ; 12: 678111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194454

RESUMO

Ascorbate peroxidase (APX) is an important reactive oxygen species (ROS)-scavenging enzyme, which catalyzes the removal of hydrogen peroxide (H2O2) to prevent oxidative damage. The peroxidase activity of APX is regulated by posttranslational modifications (PTMs), such as S-nitrosylation, tyrosine nitration, and S-sulfhydration. In addition, it has been recently reported that APX functions as a molecular chaperone, protecting rice against heat stress. In this study, we attempted to identify the various functions of APX in Arabidopsis and the effects of PTMs on these functions. Cytosol type APX1 from Arabidopsis thaliana (AtAPX1) exists in multimeric forms ranging from dimeric to high-molecular-weight (HMW) complexes. Similar to the rice APX2, AtAPX1 plays a dual role behaving both as a regular peroxidase and a chaperone molecule. The dual activity of AtAPX1 was strongly related to its structural status. The main dimeric form of the AtAPX1 protein showed the highest peroxidase activity, whereas the HMW form exhibited the highest chaperone activity. Moreover, in vivo studies indicated that the structure of AtAPX1 was regulated by heat and salt stresses, with both involved in the association and dissociation of complexes, respectively. Additionally, we investigated the effects of S-nitrosylation, S-sulfhydration, and tyrosine nitration on the protein structure and functions using gel analysis and enzymatic activity assays. S-nitrosylation and S-sulfhydration positively regulated the peroxidase activity, whereas tyrosine nitration had a negative impact. However, no effects were observed on the chaperone function and the oligomeric status of AtAPX1. Our results will facilitate the understanding of the role and regulation of APX under abiotic stress and posttranslational modifications.

3.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200464

RESUMO

Due to lifespan extension and changes in global climate, the increase in mycoses caused by primary and opportunistic fungal pathogens is now a global concern. Despite increasing attention, limited options are available for the treatment of systematic and invasive mycoses, owing to the evolutionary similarity between humans and fungi. Although plants produce a diversity of chemicals to protect themselves from pathogens, the molecular targets and modes of action of these plant-derived chemicals have not been well characterized. Using a reverse genetics approach, the present study revealed that thymol, a monoterpene alcohol from Thymus vulgaris L., (Lamiaceae), exhibits antifungal activity against Cryptococcus neoformans by regulating multiple signaling pathways including calcineurin, unfolded protein response, and HOG (high-osmolarity glycerol) MAPK (mitogen-activated protein kinase) pathways. Thymol treatment reduced the intracellular concentration of Ca2+ by controlling the expression levels of calcium transporter genes in a calcineurin-dependent manner. We demonstrated that thymol decreased N-glycosylation by regulating the expression levels of genes involved in glycan-mediated post-translational modifications. Furthermore, thymol treatment reduced endogenous ergosterol content by decreasing the expression of ergosterol biosynthesis genes in a HOG MAPK pathway-dependent manner. Collectively, this study sheds light on the antifungal mechanisms of thymol against C. neoformans.


Assuntos
Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Timol/farmacologia , Calcineurina/metabolismo , Criptococose/metabolismo , Cryptococcus neoformans/metabolismo , Ergosterol/farmacologia , Proteínas Fúngicas/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monoterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Thymus (Planta)/química
4.
Plants (Basel) ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067996

RESUMO

Transcriptome-based dose-response curves were recently applied to the phytodosimetry of gamma radiation in a dicot plant, Arabidopsis thaliana, as an alternative biological assessment of genotoxicity using DNA damage response (DDR) genes. In the present study, we characterized gamma ray-responsive marker genes for transcriptome-based phytodosimetry in a monocot plant, rice (Oryza sativa L.), and compared different phytodosimetry models between rice and Arabidopsis using gamma-H2AX, comet, and quantitative transcriptomic assays. The transcriptome-based dose-response curves of four marker genes (OsGRG, OsMutS, OsRAD51, and OsRPA1) were reliably fitted to quadratic or exponential decay equations (r2 > 0.99). However, the single or integrated dose-response curves of these genes were distinctive from the conventional models obtained by the gamma-H2AX or comet assays. In comparison, rice displayed a higher dose-dependency in the comet signal and OsRAD51 transcription, while the gamma-H2AX induction was more dose-dependent in Arabidopsis. The dose-dependent transcriptions of the selected gamma-ray-inducible marker genes, including OsGRG, OsMutS, OsRAD51, and OsRPA1 in rice and AtGRG, AtPARP1, AtRAD51, and AtRPA1E in Arabidopsis, were maintained similarly at different vegetative stages. These results suggested that the transcriptome-based phytodosimetry model should be further corrected with conventional genotoxicity- or DDR-based models despite the high reliability or dose-dependency of the model. In addition, the relative weighting of each gene in the integrated transcriptome-based dose-response model using multiple genes needs to be considered based on the trend and amplitude of the transcriptional change.

5.
Plant Physiol Biochem ; 144: 355-364, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31622938

RESUMO

Eremochloa ophiuroides, a perennial warm-season lawn grass, has a characteristic phenotype of red pigmentation in tissues during maturation. The putative gene families associated with the red coloration were previously identified in E. ophiuroides. These genes encode chalcone synthases, flavonol 3-hydroxylases, and flavonol 3'-hydroxylases, acting on the early flavonoid-biosynthesis pathway. Here, a type-I chalcone isomerase (CHI) gene was isolated from E. ophiuroides based on leaf-transcriptome data, and the corresponding enzyme was functionally characterized in vitro and in planta. Complementation of Arabidopsis tt5 mutants by overexpressing EoCHI recapitulated the wild-type seed coat color. Wounding and methyl jasmonate treatments significantly elevated the transcript level of EoCHI and total anthocyanin content in shoots. Confocal microscopy indicated the localization of EoCHI to the endoplasmic reticulum. The genomic EoCHI sequence contained two introns with a novel pattern of exon‒intron organization. Further examinations on genomic structures of CHI family from ancient to advanced plant lineages should be of interests to decipher evolutionary pathways of extant plant CHI genes.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Liases Intramoleculares/metabolismo , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Éxons/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Íntrons/genética , Proteínas de Plantas/genética , Poaceae/efeitos dos fármacos
6.
Plant Physiol Biochem ; 143: 320-328, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31539761

RESUMO

Sulfate metabolism and glucose (Glc) signaling are important processes required for plant growth, development, and environmental responses. However, whether sulfate metabolism is involved in Arabidopsis response to Glc stress remains largely unclear. Recently, we have found that proline content alterative 17 (pca17) is a double-mutant line in which both AtRZF1 (for Arabidopsis thaliana Ring Zinc Finger 1) and AHL (for Arabidopsis Halotolerance 2-like) genes are mutated. It was found that insensitive response of atrzf1 mutant to abiotic stresses was suppressed in pca17 mutant by regulating proline metabolism. Here, pca17 appeared to have sensitive response to Glc treatment by reducing cysteine (Cys) and adenosine monophosphate (AMP) contents in sulfate metabolism. Under Glc treatment, transcript levels of sulfate metabolism-related genes were significantly lower in pca17 than those in wild-type (WT) and atrzf1. Furthermore, AHL-overexpressing transgenic lines displayed more insensitive phenotypes than WT during Glc condition while ahl RNAi lines exhibited sensitive responses based on several parameters, including seed germination rate, cotyledon greening percentage, root elongation, and fresh weight. Interestingly, the pca17 phenotype in applied AMP with Glc treatment was similar to atrzf1 phenotype. Taken together, our results indicate that AHL is involved in Glc response by modulating sulfate metabolism in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Prolina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glucose/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sulfatos/metabolismo
7.
Plant Physiol Biochem ; 141: 193-201, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31174036

RESUMO

Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) is a warm-season turfgrass, widely planted in residential lawns and recreational fields. Here, we uncovered three major terpenes released from the shoots of Eo: (E)-ß-ocimene (6%), α-muurolene (87.8%), and eremophilene (6.2%). Methyl jasmonate (MeJA) treatment increased the emission of monoterpenes, including (E)- and (Z)-ß-ocimene, limonene, and myrcene, as well as sesquiterpene blends of (E)-caryophyllene, α-copaene, (+)-cyclosativene, and α-farnesene. RNA sequencing analysis predicted 14 putative Eo terpene synthase (EoTPS) genes, and two full-length EoTPS were successfully amplified: Eo7816 (1722 bp) and Eo6039 (1701 bp). Phylogenetic analysis revealed that Eo7816 and Eo6039 belonged to the clades of TPS-b and TPS-a, respectively. The Arabidopsis transgenic plants overexpressing Eo7816 exclusively released (E)-ß-ocimene (96%) with (Z)-ß-ocimene and myrcene. In contrast, Eo6039-overexpressing Arabidopsis plants emitted significant amounts of α-muurolene (69.4%) and eremophilene (21.8%). Together, we demonstrated that the two TPSs play roles in producing major volatile terpenes in Eo.


Assuntos
Acetatos/química , Alquil e Aril Transferases/metabolismo , Ciclopentanos/química , Oxilipinas/química , Poaceae/enzimologia , Terpenos/química , Transcriptoma , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Análise por Conglomerados , DNA Complementar/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Sesquiterpenos Policíclicos , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Sesquiterpenos/química
8.
Sci Rep ; 8(1): 9171, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907832

RESUMO

Ascorbate peroxidase (APX) is a class I haem-containing peroxidase, which catalyses the conversion of H2O2 to H2O and O2 using ascorbate as the specific electron donor. APX plays a central role in the elimination of intracellular reactive oxygen species (ROS) and protects plants from the oxidative damage that can occur as a result of biotic and abiotic stresses. At present, the only known function of APX is as a peroxidase. However, in this study, we demonstrate that Oryza sativa APX2 also operates as a molecular chaperone in rice. The different functions of OsAPX2 correlate strongly with its structural conformation. The high-molecular-weight (HMW) complexes had chaperone activity, whereas the low-molecular-weight (LMW) forms displayed predominantly APX activity. The APX activity was effectively inhibited by sodium azide, which is an inhibitor of haem-containing enzymes, but this did not affect the protein's activity as a chaperone. Additionally, the OsAPX2 conformational changes could be regulated by salt and heat stresses and these stimulated OsAPX2 dissociation and association, respectively. Our results provide new insight into the roles of APXs.


Assuntos
Ascorbato Peroxidases/química , Chaperonas Moleculares/química , Oryza/enzimologia , Proteínas de Plantas/química , Ascorbato Peroxidases/metabolismo , Resposta ao Choque Térmico/fisiologia , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Estresse Salino/fisiologia
9.
Biochem Biophys Res Commun ; 494(3-4): 499-503, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-29066352

RESUMO

Proline (Pro) metabolism in plants is involved in various cellular processes mediated during abiotic stress. However, the Pro-regulatory mechanisms are unclear. We used a suppressor mutation technique to isolate novel genes involved in the regulation of Pro metabolism in Arabidopsis. Using atrzf1 as a parental plant for T-DNA tagging mutagenesis, we identified a suppressor mutant, termed proline content alterative 21 (pca21), that displayed reduced Pro contents compared with the atrzf1 under osmotic stress conditions. Genomic Thermal Asymmetric Interlaced (TAIL)-PCR revealed pca21 harbored an inserted T-DNA in the region of At2g36620 that encodes Ribosomal Protein L24A. In general, the pca21 mutant partially suppressed the insensitivity of atrzf1 to osmotic stress and abscisic acid during seed germination and early seedling stage. Additionally, the pca21 mutant had increased MDA content and lower expression of several Pro biosynthesis-related genes than the atrzf1 mutant during drought condition. These results suggest that pca21 acts as partial suppressor of atrzf1 in the osmotic stress response through the Pro-mediated pathway.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Secas , Prolina/metabolismo , Proteínas Ribossômicas/metabolismo , Estresse Fisiológico/fisiologia , Regulação para Baixo/fisiologia , Mutação/genética , Osmose/fisiologia , Pressão Osmótica
10.
Plant Physiol Biochem ; 104: 155-64, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27031427

RESUMO

Biochemical, genetic, physiological, and molecular research in plants has demonstrated a central role of glucose (Glc) in the control of plant growth, metabolism, and development, and has revealed networks that integrate light, stresses, nutrients, and hormone signaling. Previous studies have reported that AtPGR protein as potential candidates for Glc signaling protein. In the present study, we characterized transcription factors that bind to the upstream region of the AtPGR gene isolated using the yeast one-hybrid screening with an Arabidopsis cDNA library. One of the selected genes (AtSTKL) appeared to confer elevated sensitivity to Glc response. Overexpression of AtSTKLs (AtSTKL1 and AtSTKL2) increased the sensitivity to Glc during the post-germination stages. In contrast, atstkl1 and atstkl2 antisense lines displayed reduced sensitivity to high Glc concentration during the early seedling stage. Furthermore, we showed that the two AtSTKLs bind to the 5'-GCCT-3' element of the upstream promoter region of the AtPGR gene in vitro and repress the beta-glucuronidase (GUS) activity in AtPGR promoter-GUS (P999-GUS) transgenic plants. Green fluorescent protein (GFP)-tagged AtSTKLs were localized in the nuclei of transgenic Arabidopsis cells. Collectively, these results suggest that AtSTKL1 and AtSTKL2 function both as repressors of AtPGR transcription and as novel transcription factors in the Glc signaling pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/farmacologia , Proteínas de Membrana/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cotilédone/efeitos dos fármacos , Cotilédone/genética , DNA de Plantas/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glucuronidase/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Deleção de Sequência , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
11.
Protoplasma ; 253(3): 683-690, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26530963

RESUMO

Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a severe disease of rice plants. Upon pathogen infection, rice biosynthesizes phytoalexins, including diterpenoids such as momilactones, phytocassanes, and oryzalexins. However, information on headspace volatiles in response to Xoo infection is limited. We have examined headspace volatile terpenes, induced by the infection of Xoo, and investigated their biological roles in the rice plant. Monoterpenes α-thujene, α-pinene, sabinene, myrcene, α-terpene, and (S)-limonene and sesquiterpenes cyclosativene, α-copaene, and ß-elemene were detected from 1-week-old Xoo-infected rice seedlings, by solid-phase microextraction-gas chromatography-mass spectrometry. All monoterpenes were constitutively released from rice seedlings before Xoo infection. However, (S)-limonene emission was further elicited after exposure of the seedlings to Xoo in coincidence with upregulation of limonene synthase gene (OsTPS20) transcripts. Only the stereospecific (S)-limonene [and not (R)-limonene or other monoterpenes] severely inhibited Xoo growth, as confirmed by disc diffusion and liquid culture assays. Rice seedlings showed suppressed pathogenic symptoms suggestive of resistance to Xoo infection after foliar treatment with (S)-limonene. Collectively, our findings suggest that (S)-limonene is a volatile phytoanticipin, which plays a significant role in suppressing Xoo growth in rice seedlings.


Assuntos
Cicloexenos/farmacologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Terpenos/farmacologia , Xanthomonas/efeitos dos fármacos , Xanthomonas/patogenicidade , Cicloexenos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Limoneno , Monoterpenos/metabolismo , Monoterpenos/farmacologia , Oryza/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Plântula/microbiologia , Extração em Fase Sólida/métodos , Terpenos/metabolismo , Xanthomonas/crescimento & desenvolvimento
12.
Protoplasma ; 252(4): 997-1007, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25430981

RESUMO

This study examined the volatile terpenes produced by rice seedlings in response to oxidative stress induced by various abiotic factors. Solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analyses revealed that when exposed to UV-B radiation, rice seedlings emitted a bouquet of monoterpene mixtures in a time-dependent manner. The mixtures comprised limonene, sabinene, myrcene, α-terpinene, ß-ocimene, γ-terpinene, and α-terpinolene. Among them, (S)-limonene was the most abundant volatile, discriminated by chiral SPME-GC-MS. The volatile profiles collected from rice plants treated with both γ-irradiation and H2O2 were identical to those observed in the UV-B irradiated plants, thus indicating that the volatile mixtures were specifically produced in response to oxidative stress, particularly in the presence of H2O2. Using a reverse genetics approach, we isolated full-length rice terpene synthase 20 (OsTPS20, 599 amino acids, 69.39 kDa), which was further characterized as an (S)-limonene synthase by removing the N-terminal signal peptide (63 amino acids) of the protein. The recombinant OsTPS20 protein catalyzed the conversion of geranyl diphosphate to (S)-limonene and other minor monoterpenes, essentially covering all of the volatile compounds detected from the plant. Moreover, qRT-PCR revealed that the transcript levels of OsTPS20 were significantly induced in response to oxidative stress, thereby suggesting that OsTPS20 plays a major role in producing terpene volatiles during abiotic stress. Detailed biochemical analyses and the unusual domain characteristics of OsTPS20 are also discussed in this report.


Assuntos
Oryza/enzimologia , Terpenos/metabolismo , Monoterpenos Acíclicos , Alcenos/metabolismo , Alquil e Aril Transferases/metabolismo , Monoterpenos Bicíclicos , Monoterpenos Cicloexânicos , Cicloexenos/metabolismo , Raios gama , Cromatografia Gasosa-Espectrometria de Massas , Peróxido de Hidrogênio/farmacologia , Limoneno , Monoterpenos/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Reação em Cadeia da Polimerase em Tempo Real , Técnicas de Síntese em Fase Sólida
13.
Plant Sci ; 203-204: 1-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23415322

RESUMO

The covalent attachment of ubiquitin to proteins plays a fundamental role in the regulation of cellular function through biological events involving abiotic or biotic stress responses, immune responses, and apoptosis. Here, we characterize the biological function of the Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1) in dehydration response. AtRZF1 was significantly reduced by drought stress. The atrzf1 mutant was less sensitive to osmotic stress than the wild-type during early seedling development, whereas transgenic plants overexpressing AtRZF1 were hypersensitive, indicating that AtRZF1 negatively regulates drought-mediated control of early seedling development. Moreover, the ectopic expression of the AtRZF1 gene was very significantly influential in drought sensitive parameters including proline content, water loss, membrane ion leakage and the expression of dehydration stress-related genes. AtRZF1 is a functional E3 ubiquitin ligase, and its conserved C3H2C3-type RING domain is likely important for the biological function of AtRZF1 in drought response. Together, these results suggest that the E3 ligase AtRZF1 is an important regulator of water deficit stress during early seedling development.


Assuntos
Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Prolina/metabolismo , Estresse Fisiológico , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desidratação , Secas , Flores/citologia , Flores/enzimologia , Flores/genética , Flores/fisiologia , Expressão Gênica , Mutação , Osmose , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Prolina/análise , Regiões Promotoras Genéticas , Domínios RING Finger , Plântula/citologia , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Água/metabolismo
14.
Plant Cell Physiol ; 52(1): 138-48, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097474

RESUMO

Functional analysis of a putative novel transcription factor Arabidopsis MYB-like protein designated AtMYBL, which contains two predicted DNA-binding domains, was performed. The physiological role of the R-R-type MYB-like transcription factor has not been reported in any plant. Analyses of an AtMYBL promoter-ß-glucuronidase (GUS) construct revealed substantial gene expression in old leaves and induction of GUS activity by ABA and salt stress. AtMYBL-overexpressing plants displayed a markedly enhanced leaf senescence phenotype. Moreover, the ectopic expression of the AtMYBL gene was very significantly influential in senescence parameters including Chl content, membrane ion leakage and the expression of senescence-related genes. Although the seed germination rate was improved under ABA and saline stress conditions in the AtMYBL-overexpressing plants, decreased salt tolerance was evident compared with the wild type and atmybl RNA interference lines during later seedling growth when exposed to long-term salt stress, indicating that AtMYBL protein is able to developmentally regulate stress sensitivity. Furthermore, AtMYBL protein activated the transcription of a reporter gene in yeast. Green fluorescent protein-tagged AtMYBL was localized in the nuclei of transgenic Arabidopsis cells. Taken together, these results suggest that AtMYBL functions in the leaf senescence process, with the abiotic stress response implicated as a putative potential transcription factor.


Assuntos
Arabidopsis/fisiologia , Genes myb , Folhas de Planta/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Glucuronidase/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos
15.
J Plant Res ; 124(6): 699-705, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21188458

RESUMO

The CCCH-type zinc finger proteins are a superfamily containing tandem zinc-binding motifs involved in many aspects of plant growth and development. However, the precise role of these proteins involved in plant stress tolerance is poorly understood. This study was to examine the regulatory and functional role of the CCCH-type zinc finger protein, AtOZF1 (At2g19810), under oxidative stress. Interestingly, the AtOZF1 protein was localized in the plasma membrane. The AtOZF1 transcripts were highly induced by treatment with hydrogen peroxide, abscisic acid and salinity. The AtOZF1-overexpressing plants were relatively resistant to oxidative stress than wild-type and T-DNA insertion mutant atozf1. Malondialdehyde, a decomposition product of lipid peroxidation, accumulated in atozf1 mutants more than in wild-type and AtOZF1-overexpressing plants. Furthermore, atozf1 mutants displayed lower activities of catalase and guaiacol peroxidase, higher chlorosis, and down-regulated expression of antioxidant genes under oxidative stress. Taken together, these observations demonstrate that AtOZF1 is required for the tolerance of Arabidopsis to oxidative stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular
16.
Korean J Urol ; 51(1): 34-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20414408

RESUMO

PURPOSE: We aimed to prove the safety and feasibility of right-sided hand-assisted laparoscopic donor nephrectomy (HALDN). MATERIALS AND METHODS: Between May 2006 and May 2009, 16 patients underwent right-sided HALDN at our institution. Of these patients, 15 showed significantly lower renal function in the right kidney than in the left one and 1 had a stone in the right kidney. When the right renal vein was divided, an EndoGIA stapling device was placed on the wall of the inferior vena cava to gain a maximal length of the vein. We evaluated intraoperative and postoperative parameters such as operative time, delivery time, warm ischemic time, estimated blood loss, intraoperative and postoperative complication rates, length of hospital stay, and serum creatinine levels of donors (at the time of discharge) and recipients (4 weeks postoperatively), comparing the right-sided HALDN group (our study) with a left-sided HALDN group (from a previously reported study). RESULTS: A total of 16 right-sided HALDNs were successfully performed without any complications or open conversion. All of the intraoperative and postoperative parameters were similar between the right-sided HALDN and left-sided HALDN groups. There were no technical problems in the recipients in the anastomosis of the renal vein, and the ureteral anastomoses were also successful. CONCLUSIONS: Right-sided HALDN is safe and technically feasible in a donor, showing favorable graft outcomes. The results of our study suggest that right-sided HALDN may be preferable in patients with significantly lower renal function in the right kidney than in the left one.

17.
New Phytol ; 185(1): 103-13, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19765229

RESUMO

We identified and functionally characterized the AtSKIP gene (At1g77180), an Arabidopsis homologue of SNW/SKIP, under abiotic stresses. Although the SNW/SKIP protein has been implicated as a critical transcription cofactor, its biological functions have yet to be reported in any plant. Recently, we have isolated Salt-tolerance genes (SATs) via the overexpression screening of yeast with a maize cDNA library. One of the selected genes (SAT2) appeared to confer elevated tolerance to salt. Maize SAT2 cDNA encodes a homologue of the human SNW/SKIP transcriptional coregulator. Treatment with salt, mannitol and abscisic acid induced AtSKIP expression. Ectopic expression of the AtSKIP gene modulated the induction of salt tolerance, dehydration resistance and insensitivity towards abscisic acid under stress conditions. By contrast, atskip antisense lines displayed reduced tolerance to abiotic stresses during germination. Moreover, a decrease in AtSKIP expression resulted in an abnormal phenotype. We further determined that the AtSKIP protein activated the transcription of a reporter gene in yeast. Green fluorescent protein-tagged AtSKIP was localized in the nuclei of both onion cells and transgenic Arabidopsis cells. Taken together, these results suggest that AtSKIP functions as both a positive regulator and putative potential transcription factor in the abiotic stress signalling pathway.


Assuntos
Ácido Abscísico/genética , Adaptação Fisiológica/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/fisiologia , Acetiltransferases/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , DNA Complementar , Desidratação , Biblioteca Gênica , Genes de Plantas , Genes Reporter , Germinação , Humanos , Manitol , Mutação , Cebolas , Osmose , Fenótipo , Plantas Geneticamente Modificadas , Tolerância ao Sal/genética , Cloreto de Sódio , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Leveduras/genética , Zea mays/genética
18.
Physiol Plant ; 135(4): 426-35, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19210750

RESUMO

Recently, we have isolated salt-tolerance genes (SATs) on the basis of the overexpression screening of yeast with a maize cDNA library from kernels. One of the selected genes [salt-tolerance 32 (SAT32)] appears to be a key determinant for salt stress tolerance in yeast cells. Maize SAT32 cDNA encodes for a 49-kDa protein, which is 41% identity with the Arabidopsis salt-tolerance 32 (AtSAT32) unknown gene. Arabidopsis Transfer-DNA (T-DNA) knockout AtSAT32 (atsat32) altered root elongation, including reduced silique length and reduced seed number. In an effort to further assess salinity tolerance in Arabidopsis, we have functionally characterized the AtSAT32 gene and determined that salinity and the plant hormone ABA induced the expression of AtSAT32. The atsat32 mutant was more sensitive to salinity than the wild-type plant. On the contrary, Arabidopsis overexpressing AtSAT32 (35S::AtSAT32) showed enhanced salt tolerance and increased activity of vacuolar H(+)-pyrophosphatase (V-PPase, EC 3.6.1.1) under high-salt conditions. Consistent with these observations, 35S::AtSAT32 plants exhibited increased expression of salt-responsive and ABA-responsive genes, including the Rd29A, Erd15, Rd29B, Rd22 and RAB18 genes. Therefore, our results indicate that AtSAT32 is involved in both salinity tolerance and ABA signaling as a positive regulator in Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Genes Reguladores , Plantas Tolerantes a Sal , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/enzimologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pirofosfatase Inorgânica/metabolismo , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Alinhamento de Sequência , Cloreto de Sódio/farmacologia , Vacúolos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...